Digital Logic

Lecture — 7 - Chapter 3

Outline

* Minimization
e Karnaugh maps (K-maps)

Karnaugh Maps (K-map)

= A K-map

 Made up of squares

 KEach square represents a minterm

* a graphical representation of a Boolean function

e Alternative algebraic expressions for the same func-
tion are derived by recognizing patterns of squares

e The simplified expressions produced by the map are
always in the form of sum of products. implemented
1n two-level circuits)

» The K-map can be viewed as

e A reorganized version of the truth table

CS 2420 - Husain Gholoom - lecturer Page 1



Digital Logic

Two Variable Maps
= A 2-variable Karnaugh Map:

X<

m,

LY

m,

Y

n,

m-

)

CS 2420 - Husain Gholoom - lecturer

Page 2



Digital Logic

K-Map and Truth Tables
e The K-Map is just a different form of the truth ta-

ble.

e Example — Two variable function:

F(x,y)=xy

Function Table

0

m

ny

n,

n;

Input | Function
Values Value
(X,y) F(x,y)
00 0
01 0
10 0
11 1
G(x,y) =m3

(a) xy

CS 2420 - Husain Gholoom - lecturer

Page 3



Digital Logic

K-Map Function Representation

 Example: G(x,y) = x'y+xy'+xy

Function Table

Input | Function oo, T
Values | Value oy
(X,y) F(X.y) 0 L
00 0
01 1 X1 1 Il
10 1 X
11 1 (b) x + y

e G(x,y) = ml+m2+m3

* For G(x,y), two pairs of adjacent cells containing 1’s
can be combined using the Minimization Theorem:

Gxy = (xy +xy)+ (xy+x y)=x+y

\ Duplicate xy

CS 2420 - Husain Gholoom - lecturer Page 4



Digital Logic

Three Variable K-Map

e Row and Columns

* Any two adjacent squares in the map differ by only one
variable

e two pairs of adjacent squares can be combined by re-
moving the disimilar variable mb5 + m7

N e
v » -
0 0 1 10
m ml H13 INJ
my | my | omy | omy O1x'y'Z" 1 xy'z | vz [ x'y?!
my NIS HI-; s
y y p ) . sl ! ! . iy !
my | ms | omy | mg Sz L oy'z | vz | xyz
_v—/
(d) (b)

CS 2420 - Husain Gholoom - lecturer Page 5



Digital Logic

Three Variable K-Map

 F(x,y,z)= >(2,3,4,5)

ms+mo=? mot+mo=?
matms=? matme="?
vz o 3
™0 0o 11 10 /
: i 7

My m m: my / X7
0 l l
y s iy M

e/ -

On a 3-variable K-Map:

e Two adjacent squares (2-cell Rectangles) represent a
product term with two variables

CS 2420 - Husain Gholoom - lecturer Page 6



Digital Logic

Three-Variable Maps

 Example Shapes of 2-cell Rectangles:

19

Z

e Read off the product terms for the rectangles shown

CS 2420 - Husain Gholoom - lecturer

Page 7



Digital Logic

THREE VARIABLE K-MAP

* More practice:

Fx,y, z)=> (2,3,6,7)
Fx, vy, z)=> (1,3,5,7)
F(X7 Y, Z): E (0’27476) \ vz “

my, 1y ms my

Ox'y'z" | x'y'z | x'yvz | x'yz

my msq M4 me

X1 xy'z" | xv'z | xvz | xyz

On a 3-variable K-Map:

® Four “adjacent” terms (Rectangles of 4 cells) repre-
sent a product term with one variable
® More adjacent squares are combined, obtain a prod-

uct term with fewer literals

CS 2420 - Husain Gholoom - lecturer Page 8



Digital Logic

Three-Variable Maps

 Example Shapes of 4-cell Rectangles:

7 N AT
¢
N/

Z

e Read off the product terms for the rectangles shown

CS 2420 - Husain Gholoom - lecturer Page 9



Digital Logic

Three Variable Maps

e K-Maps can be used to simplify Boolean functions by
systematic methods. Terms are selected to cover the
“1s”in the map.

e Example: Simplify F(x,y,z) =2m(1,2,3,5,7)

Z X
\ V/y
-
1
1

Z

F(x, vy, z) = Z+ XYy

CS 2420 - Husain Gholoom - lecturer Page 10



Digital Logic

THREE VARIABLE MAPS

* F=A'C+A'B+AB'C+BC

* Each produce term can be plotted in the map in one, two, or
more squares
* The minterms of the function are then read directly from the

map.

Four Variable Maps

.\.
\ V2 A~
WA 00 01 11 10
mg m my m,y
i my n; s 00 |w'x'y'z" | wx'y'z| wx'yz [w'x'yz’
III_‘ ’”5 III7 ’”b
my ms s Mg 01 w'xy'z" | wixy'z | wxyz | wixyz'
rX
my my3 mys my
My mys mys My 1L [ wxy'z" | wxy'z | wxyz | wxyz'
WA
mg my myy my,
mg i my My 10 [wx'y'z" | wx'y'z | wx'yz | wx'yz’
(a) (b)

CS 2420 - Husain Gholoom - lecturer Page 11



Digital Logic

Four Variable Maps

* Four variable maps can have rectangles corresponding to:

Two adjacent squares = 3 variables,

Four adjacent squares = 2 variables

Eight adjacent squares = 1 variable,

Sixteen adjacent squares = zero variables (i.e.
Constant "1")

* The larger the number of squares combined, the smaller is the
number of variables

Four-Variable Maps

 Example Shapes of Rectangles:

Y
CT T = Z
4 3 B2 (]
12 13 15 2] X
W —
3 3 T =
pa

CS 2420 - Husain Gholoom - lecturer Page 12



Digital Logic

Four-Variable Maps

 Example Shapes of Rectangles:

Y
t 4 5 7 j
\_
12 13 15 1j
W \_
) ) 11 10
s "N
N AN Y N

CS 2420 - Husain Gholoom - lecturer

Page 13



Digital Logic

Four-Variable Map Simplification

e Fw,x,y,2=> (0,1, 2,4,5,6,8,9,12, 13, 14)

> X

vz -
WA 00 01 11 10

'"0 '"1 ﬂI:‘ ”12

00 (w'x'y'z'[wix'y'z| wix'yz |wx'yz’
ny M m; mg

01 |wixy'z" | wixy'z | wxyz | wxyz'
my, Mya mys myy

11| wxy'z" | wxy'z WXVyz wxyz'

W3 ng my my, my,
10 |wx'y'z" | wx'v'z | wx'yvz [ wx'yz’

Four-Variable Map Simplification

A <

* F(A,B,C,D)= A'B'C' +B'CD' +A'BCD' +AB'C'

CS 2420 - Husain Gholoom - lecturer

Page 14



Digital Logic

Simplification Rules

+ Objectives :

e  All the minterms of the functions are covered.
* The number of terms in the expression is minimized
e There are no redundant minterms.

+ Prime Implicant: is a product term obtained by combining the
maximum possible number of adjacent squares in the map into a
rectangle.

+ A prime implicant is called an Essential Prime Implicant if a
minterm in a square is covered by only this prime implicant.

CS 2420 - Husain Gholoom - lecturer Page 15



Digital Logic

Example of Prime Implicants

 Find ALL Prime Implicants

ESSENTIAL Prime
Implicants c
....................... 'B D\

R »BD\\\Q__q B

R

il A-—1] T [1——
. D i

AD —  @interms covered bi sinile ﬁrime imﬁlicant

CS 2420 - Husain Gholoom - lecturer Page 16



Digital Logic

Optimization Algorithm

¢ Find all prime implicants.
® Include all essential prime implicants in the solution

® Select a minimum cost set of non-essential prime
1mplicants to cover all minterms not yet covered.:

® (Obtaining an optimum solution
(There may be more than one way of combining
squares)

CS 2420 - Husain Gholoom - lecturer Page 17



Digital Logic

Example of Prime Implicants

ESSENTIAL Prime Implicants

CD
__ | ~
....................... BD —
..... 1 T 1J
........................... »BD——_|(1 1
B 1B
1 {1}
- A —
oo
AB . N —

AD 2 . AD R
@linterms covered bx smﬁle Brlmeﬂﬁllcant

CS 2420 - Husain Gholoom - lecturer Page 18



Digital Logic

Optimization Algorithm
¢ Find all prime implicants.
® Include all essential prime implicants in the solution

® Select a minimum cost set of non-essential prime 1
mplicants to cover all minterms not yet covered:

® (Obtalning an optimum solution

® There may be more than one way of combining
squares

® (Obtaining a good simplified solution: Use the Selec-
tion Rule

Prime Implicant Selection Rule

° the among prime implicants as much
as possible.

® Make sure that each prime implicant selected includes
in any other prime
1mplicant selected.

CS 2420 - Husain Gholoom - lecturer Page 19



Digital Logic

Selection Rule Example

e Simplify F(A, B, C, D) given on the K-map.

Selected Essential
C C
"11 t 1 / 1
DiEiE i g :i\ 1/ 1] 1
= B A B
1 \1
A : A
il II 1] 1
D D

\/ Minterms covered by essential prime implicants

CS 2420 - Husain Gholoom - lecturer Page 20



Digital Logic

Don't Cares in K-Maps

® Incompletely specified functions:
e function table or map contains entries
® the input values for the minterm never occur, or
® the output value for the minterm is not used
In these cases, the output value need not be defined
Instead, the output value 1s defined as a “don't care”

e Example 1: A logic function having the binary codes for
the BCD digits as its inputs. Only the codes for 0
through 9 are used. The six codes, 1010 through 1111
never occur, so the output values for these codes are “x”
to represent “don’t cares.”

CS 2420 - Husain Gholoom - lecturer Page 21



Digital Logic

e Example 2: A circuit that represents a very common
situation that occurs in computer design

e Input A, B, and C which take on all possible
combinations, and

e a single output Z =1 only for combinations A =1 and
B =1 or C =1, otherwise ignoring it.

e Thus, Z 1s specified only for those combinations, and
for all other combinations of A, B, and C, Z 1s a don’t
care. Specifically, Z must be specified for AB + C =1,
and 1s a don’t care for :

AB+C=0

e By ) in the function
table or map, the cost of the logic circuit may be lowered.

e Ultimately, each don’t care “x” entry may take on either
a 0 or 1 value in resulting solutions

CS 2420 - Husain Gholoom - lecturer Page 22



Digital Logic

Don’t Care

. F(W’Xy y, Z): E (17 3’ 77 117 15)
. D(W,X,y,Z): 2 (O’ 27 5)

EXAMPLE: BCD “5 OR MORE”

® The map below gives a function F1(w,x,y,z) which 1s de-
fined as "5 or more" over BCD inputs. With the don't
cares used for the 6 non-BCD combinations:

Y
—w+xz+

00 01 03 02 FIl (wuxyz)=w+xz+xy

o A This is much lower in cost
_4 ‘ 5 ‘ " »f’. X than F2 where the “don't
‘ )(12 \X N 'L(:‘J _X1' cares” were treated as "0s."”

v ‘1 2 1 Q >(11 XJ
Z

Folw, X,y,2)=wWXztwxytwxy

CS 2420 - Husain Gholoom - lecturer Page 23



Digital Logic

Example

® Find the optimum SOP solution:

F(A,B,C,D) = 5.(3,4,6,9,11) + 34(2,5,7,10,13)

CS 2420 - Husain Gholoom - lecturer Page 24



Digital Logic

Selection Rule Example with Don't Cares

e Simplify F(A, B, C, D) given on the K-map.

Selected Essential
| C
11X
gl xx [ 1] /] x [1]
) . ir i
X fx
\
A — A
anEl 1)
D D

V" Minterms covered by essential prime implicants

CS 2420 - Husain Gholoom - lecturer Page 25



