
Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 1	

Lecture	
 –	
 7	
 	
 -­‐	
 	
 Chapter	
 3	

	

	

Outline	
 	

• Minimization
• Karnaugh maps (K-maps)

Karnaugh Maps (K-map)

 A K-map
• Made up of squares
• Each square represents a minterm
• a graphical representation of a Boolean function
• Alternative algebraic expressions for the same func-

tion are derived by recognizing patterns of squares
• The simplified expressions produced by the map are

always in the form of sum of products. (implemented
in two-level circuits)

 The K-map can be viewed as

• A reorganized version of the truth table

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 2	

Two Variable Maps

 A 2-variable Karnaugh Map:

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 3	

K-Map and Truth Tables
• The K-Map is just a different form of the truth ta-

ble.
• Example – Two variable function:

F(x,y)=xy

G(x,y) = m3

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 4	

K-Map Function Representation

• Example: G(x,y) = x'y+xy'+xy

• G(x,y) = m1+m2+m3

• For G(x,y), two pairs of adjacent cells containing 1’s
can be combined using the Minimization Theorem:

G(x,y) = (x y’ + x y) + (x y + x’ y) = x + y

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 5	

Three Variable K-Map

• Row and Columns
• Any two adjacent squares in the map differ by only one

variable
• two pairs of adjacent squares can be combined by re-

moving the disimilar variable m5 + m7

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 6	

Three Variable K-Map

• F(x,y,z)= ∑(2,3,4,5)

 m3+m2=? m0+m2=?
 m4+m5=? m4+m6=?

On a 3-variable K-Map:

 Two adjacent squares (2-cell Rectangles) represent a
product term with two variables

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 7	

Three-Variable Maps

• Example Shapes of 2-cell Rectangles:

• Read off the product terms for the rectangles shown

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 8	

THREE VARIABLE K-MAP

• More practice:

F(x, y, z)= ∑ (2,3,6,7)
 F(x, y, z)= ∑ (1,3,5,7)
 F(x, y, z)= ∑ (0,2,4,6)

On a 3-variable K-Map:

 Four “adjacent” terms (Rectangles of 4 cells) repre-
sent a product term with one variable

 More adjacent squares are combined, obtain a prod-
uct term with fewer literals

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 9	

Three-Variable Maps

• Example Shapes of 4-cell Rectangles:

• Read off the product terms for the rectangles shown

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 10	

Three Variable Maps

• K-Maps can be used to simplify Boolean functions by
 systematic methods. Terms are selected to cover the
 “1s”in the map.

• Example: Simplify

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 11	

THREE VARIABLE MAPS

• F=A'C+A'B+AB'C+BC

• Each produce term can be plotted in the map in one, two, or

more squares

• The minterms of the function are then read directly from the
map.

Four Variable Maps

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 12	

Four Variable Maps

• Four variable maps can have rectangles corresponding to:

 Two adjacent squares = 3 variables,
 Four adjacent squares = 2 variables
 Eight adjacent squares = 1 variable,
 Sixteen adjacent squares = zero variables (i.e.

Constant "1")
• The larger the number of squares combined, the smaller is the

number of variables

Four-Variable Maps

• Example Shapes of Rectangles:

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 13	

Four-Variable Maps

• Example Shapes of Rectangles:

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 14	

Four-Variable Map Simplification

• F(w,x, y, z)= ∑ (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

Four-Variable Map Simplification

• F(A,B,C,D)= A'B'C' +B'CD' +A'BCD' +AB'C'

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 15	

Simplification Rules

 Objectives :

• All the minterms of the functions are covered.
• The number of terms in the expression is minimized
• There are no redundant minterms.

 Prime Implicant: is a product term obtained by combining the
maximum possible number of adjacent squares in the map into a
rectangle.

 A prime implicant is called an Essential Prime Implicant if a
minterm in a square is covered by only this prime implicant.

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 16	

Example of Prime Implicants

• Find ALL Prime Implicants

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 17	

Optimization Algorithm

 Find all prime implicants.

 Include all essential prime implicants in the solution

 Select a minimum cost set of non-essential prime
implicants to cover all minterms not yet covered:

 Obtaining an optimum solution
(There may be more than one way of combining
squares)

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 18	

Example of Prime Implicants

ESSENTIAL Prime Implicants

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 19	

Optimization Algorithm

 Find all prime implicants.

 Include all essential prime implicants in the solution

 Select a minimum cost set of non-essential prime i
mplicants to cover all minterms not yet covered:

 Obtaining an optimum solution

 There may be more than one way of combining
squares

 Obtaining a good simplified solution: Use the Selec-
tion Rule

Prime Implicant Selection Rule

 Minimize the overlap among prime implicants as much
as possible.

 Make sure that each prime implicant selected includes at

least one minterm not included in any other prime
implicant selected.

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 20	

Selection Rule Example

 Simplify F(A, B, C, D) given on the K-map.

 Minterms covered by essential prime implicants

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 21	

Don't Cares in K-Maps

 Incompletely specified functions:
 function table or map contains entries

 the input values for the minterm never occur, or
 the output value for the minterm is not used

 In these cases, the output value need not be defined
 Instead, the output value is defined as a “don't care”

 Example 1: A logic function having the binary codes for

the BCD digits as its inputs. Only the codes for 0
through 9 are used. The six codes, 1010 through 1111
never occur, so the output values for these codes are “x”
to represent “don’t cares.”

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 22	

 Example 2: A circuit that represents a very common
situation that occurs in computer design

 Input A, B, and C which take on all possible
combinations, and

 a single output Z =1 only for combinations A = 1 and
B = 1 or C = 1, otherwise ignoring it.

 Thus, Z is specified only for those combinations, and

for all other combinations of A, B, and C, Z is a don’t
care. Specifically, Z must be specified for AB + C = 1,
and is a don’t care for :

 AB + C = 0

 By placing “don't cares” (an “x” entry) in the function

table or map, the cost of the logic circuit may be lowered.

 Ultimately, each don’t care “x” entry may take on either

a 0 or 1 value in resulting solutions

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 23	

Don’t Care

 F(w,x, y, z)= ∑ (1, 3, 7, 11, 15)
 D(w,x,y,z)= ∑ (0, 2, 5)

EXAMPLE: BCD “5 OR MORE”

 The map below gives a function F1(w,x,y,z) which is de-
fined as "5 or more" over BCD inputs. With the don't
cares used for the 6 non-BCD combinations:

F1 (w,x,y,z) = w + x z + x y

This is much lower in cost
than F2 where the “don't
cares” were treated as "0s.“

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 24	

Example

 Find the optimum SOP solution:

F(A,B,C,D) = (3,4,6,9,11) + (2,5,7,10,13)

Digital Logic

CS	
 2420	
 –	
 Husain	
 Gholoom	
 -­‐	
 lecturer	
 Page	
 25	

Selection Rule Example with Don't Cares

 Simplify F(A, B, C, D) given on the K-map.

