Lecture – 5 - Chapter 2

Outline

Other Logic Gates and their uses

Other Logic Operations

Truth Tables for the 16 Functions of Two Binary Variables

x	y	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
		0															
		0															
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	xt/y	Inhibition	x, but not y
$F_3 = x$		Transfer	X
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x \supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$, -	Identity	Binary constant 1

Digital logic gates

Name	Graphic symbol	Algebraic function	Truth table
AND	<i>x y F</i>	F = xy	x y F 0 0 0 0 1 0 1 0 0 1 1 1
OR	x	F = x + y	x y F 0 0 0 0 1 1 1 0 1 1 1 1
Inverter	x	F = x'	x F 0 1 1 0
Buffer	x	F = x	x F 0 0 1 1
NAND	х у — Б	F = (xy)'	x y F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	х у —	F = (x + y)'	x y F 0 0 1 0 1 0 1 0 0 1 1 0
Exclusive-OR (XOR)	x	$F = xy' + x'y$ $= x \oplus y$	x y F 0 0 0 0 1 1 1 0 1 1 1 0
Exclusive-NOR or equivalence	x	$F = xy + x'y'$ $= (x \oplus y)'$	x y F 0 0 1 0 1 0 1 0 0 1 1 1

Buffer

• A buffer is a gate with the function F = X:

- In terms of Boolean function, a buffer is the same as a connection!
- So why use it?
 - A buffer is an electronic amplifier used to improve circuit voltage levels and increase the speed of circuit operation.

NAND Gate

- The basic NAND gate has the following symbol, illustrated for three inputs:
 - AND-Invert (NAND)

$$\begin{array}{c|c}
x \\
Y \\
z
\end{array}$$

$$F(X,Y,Z) = (X \cdot Y \cdot Z)'$$

• NAND represents NOT AND, i. e., the AND function with a NOT applied. The symbol shown is an AND-Invert. The small circle ("bubble") represents the invert function.

• Applying DeMorgan's Law gives Invert-OR (NAND)

- This NAND symbol is called Invert-OR, since inputs are inverted and then ORed together.
- AND-Invert and Invert-OR both represent the NAND gate. Having both makes visualization of circuit function easier.
- A NAND gate with one input degenerates to an inverter.
- The NAND gate is the natural implementation for CMOS technology in terms of chip area and speed.

- *Universal gate* a gate type that can implement any Boolean function.
- The NAND gate is a universal gate

NAND circuit

$$F = AB + CD$$

$$F=xy'+x'y+z$$

- 1. Convert all AND gates to NAND gates with AND-invert graphic symbols
- 2. Convert all OR gates to NAND gates with invert-OR graphic symbols
- 3. For every bubble that is not compensated by another small circle along the same line, insert an inverter or complement the input literal.

F=A(CD+B)+BC'

NOR Gate

- The basic NOR gate has the following symbol, illustrated for three inputs:
 - OR-Invert (NOR)

• NOR represents <u>NOT - OR</u>, i. e., the OR function with a NOT applied. The symbol shown is an OR-Invert. The small circle ("bubble") represents the invert function.

• Applying DeMorgan's Law gives Invert-AND (NOR)

- This NOR symbol is called Invert-AND, since inputs are inverted and then ANDed together.
- OR-Invert and Invert-AND both represent the NOR gate. Having both makes visualization of circuit function easier.
- A NOR gate with one input degenerates to an inverter.
- The NOR gate is a natural implementation for some technologies other than CMOS in terms of chip area and speed.

• The NOR gate is a universal gate

NOR circuit

$$F=(A+B)(C+D)E$$

- Convert all OR gates to NOR gates with OR-invert graphic symbols
- Convert all AND gates to NOR gates with invert-AND graphic symbols
- For every bubble that is not compensated by another small circle along the same line, insert an inverter or complement the input literal.

Exclusive OR/ Exclusive NOR

- The *eXclusive OR (XOR)* function is an important Boolean function used extensively in logic circuits.
- The XOR function may be;
 - implemented directly as an electronic circuit (truly a gate) or
 - implemented by interconnecting other gate types (used as a convenient representation)
- The *eXclusive NOR* function is the complement of the XOR function
- Uses for the XOR and XNORs gate include:
 - Adders/subtractors/multipliers
 - Counters/incrementers/decrementers
 - Parity generators/checkers
- Definitions
 - The XOR function is: $X \oplus Y = XY' + X'Y$
 - The eXclusive NOR (XNOR) function,

otherwise
$$(X \oplus Y) = X Y + X Y$$

known as equivalence

Truth Tables for XOR/XNOR

• Operator Rules: XOR

	_		~ -	_
\mathbf{v}	N 1	7	1	D
Λ	N	•	,	K.

X	Y	X ⊕ Y
0	0	0
0	1	1
1	0	1
1	1	0

;	<	; ⊕< RU ;≡<

• The XOR function means:

X OR Y, but NOT BOTH

• Why is the XNOR function also known as the *equivalence* function, denoted by the operator ≡?

• The XOR function can be extended to 3 or more variables. For more than 2 variables, it is called an *odd function*.

$$X \oplus Y \oplus Z = X'Y'Z + X'YZ' + XY'Z' + XYZ$$

The Truth Table

x	У	z	F
0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0 1	0 1 1 0 1 0 0
1 1	1 1	0 1	1

- The complement of the odd function is the even function.
- The XOR identities:

• XOR symbol:

• XNOR symbol:

• Shaped symbols exist only for two inputs

Example: Odd Function Implementation

• Design a 3-input odd function with 2-input XOR gates

$$F = X \oplus Y \oplus Z$$

•
$$F = (X \oplus Y) \oplus Z$$

• The circuit:

Parity Generators and Checkers

- In Chapter 1, a parity bit added to n-bit code to produce an n + 1 bit code:
 - Add a parity bit to generate code words with even parity

Even-Parity-Generator Truth Table

Three	e-Bit Me	Parity Bit		
X	y	Z	P	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

PARITY CHECKERS

• Use parity checker circuit to check code words with even parity

	Four Rece	Parity Error Check			
x	y	y z P		c	
O	O	0	O	0	
O	O	O	1	1	
O	O	1	O	1	
O	O	1	1	0	
O	1	0	O	1	
O	1	O	1	0	
O	1	1	O	0	
O	1	1	1	1	
1	O	O	O	1	
1	O	O	1	0	
1	O	1	O	0	
1	O	1	1	1	
1	1	O	O	0	
1	1	O	1	1	
1	1	1	O	1	
1	1	1	1	0	

PARITY GENERATORS AND CHECKERS

• Example: n = 3. Generate even parity code words of length four with 3-bit even parity generator:

• Check even parity code words Of length four with 4-bit even parity checker:

Operation: (X,Y,Z) = (0,0,1) gives
(X,Y,Z,P) = (0,0,1,1) and E = 0.
If Y changes from 0 to 1 between
generator and checker, then E = 1 indicates an error.

<u>INFORMATION REPRESENTATION - Signals</u>

Example - Physical Quantity: Voltage

 Binary values are represented by values or ranges of values of physical quantities

Circuit Attributes

- Power dissipation: power consumed
- Noise margin: maximum external noise voltage added in an input does not cause an undesirable change in output

Fan-out

- The number of standard loads that can be connected to the output of the gate without degrading its normal operation.
- A standard load is the amount of current needed by an input of another gate.

Circuit Attributes

- In actual physical gates, if one or more input changes causes the output to change, the output change does not occur instantaneously.
- The delay between an input change(s) and the resulting output change is the Propagation delay.

