Lecture – 5

Chapter 2: Sections 4-7

Outline

Boolean Functions
What are Canonical Forms?
Minterms and Maxterms
Index Representation of Minterms and Maxterms
Sum-of-Minterm (SOM) Representations
Product-of-Maxterm (POM) Representations
Conversions between Representations

Boolean Algebra

Boolean algebra allows us to apply provable mathematical principles to help us design logical circuits

An algebraic structure defined on a set of at least two elements B={0, 1}, together with three binary operators (denoted +, · and ') that satisfies the following basic identities:

Properties of Boolean Algebra

Closure: The structure is closed with respect to the operator +, ', '

Postulate: 1. closure: the structure is closed with respect to the operator +, ·, '

2. (a)
$$X + 0 = X$$

(b)
$$X \cdot 1 = X$$

identity

3. (a)
$$X + Y = Y + X$$

(b)
$$XY = YX$$

Commutative

4. (a)
$$X(Y + Z) = XY + XZ$$
 (b) $X + YZ = (X + Y) (X + Z)$

(b)
$$X + YZ = (X + Y) (X + Z)$$

Distributive

5. (a)
$$X + X' = 1$$

(b)
$$\mathbf{X} \cdot \mathbf{X'} = \mathbf{0}$$

Complement

Theorem:

1. (a)
$$X + X = X$$

(b)
$$X \cdot X = X$$

2. (a)
$$X + 1 = 1$$

(b)
$$X \cdot 0 = 0$$

3. (a)
$$(X')' = X$$

4. (a)
$$(X + Y) + Z = X + (Y + Z)$$
 (b) $(XY) Z = X(Y Z)$

Associative

5. (a)
$$(X + Y)' = X' \cdot Y'$$

(b)
$$(X \cdot Y)' = X' + Y'$$

6. (a)
$$X + XY = X$$

(b)
$$X(X+Y) = X$$

Boolean Functions

Tri	ıth	Ta	h	ما
111	JUI	ıa	U	ı

Tradit table								
XYZ	$F = X + Y' \cdot Z$							
000	0							
001	1							
010	0							
011	0							
100	1							
101	1							
110	1							
111	1							

Equation

$$F = X + Y'Z$$

Logic Diagram

- Boolean function described by an algebraic expression consists of binary variables, 0, 1 and logic operation symbols.
- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

Boolean Functions

$$F_2 = \mathbf{x'y'z} + \mathbf{x'yz} + \mathbf{xy'}$$

Boolean Functions

$$F2=x'y'z+x'yz+xy'=x'z(y'+y)+xy'=x'z+xy'$$

By manipulating a boolean expression, obtain a simpler expression and thus reduce the number of gates and the number of inputs (reduce the cost of a circuit)

Expression Simplification

- Each term requires a gate.
- Literal: a single variable within a term, in complemented or uncomplemented form.

```
F_2=x'y'z+x'yz+xy' (3 terms, 8 literal)

F_2=x'y'z+x'yz+xy'=x'z+xy' (2 terms, 4 literal)
```

• Simplify to contain the smallest number of <u>literals</u> (complemented and uncomplemented variables): (x+y)(x+y')

FUNCTION EXAMPLE

Functions of Three Variables

x	y	z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

•
$$\mathbf{f}_1 = \mathbf{x}'\mathbf{y}'\mathbf{z} + \mathbf{x}\mathbf{y}'\mathbf{z}' + \mathbf{x}\mathbf{y}\mathbf{z}$$

$$= (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y'+z)$$

•
$$\mathbf{f}_2 = \mathbf{x'yz} + \mathbf{xy'z} + \mathbf{xyz'} + \mathbf{xyz}$$

$$= (x+y+z)(x+y+z')(x+y'+z)(x'+y+z)$$

Minterm Function Example

Example: f1 = x'y'z + xy'z' + xyz

хуг	index	x'y'	z+ >	xy'z	' +	xyz	= f1
000	0	0	+	0	+	0	= 0
001	1	1	+	0	+	0	= 1
0 1 0	2	0	+	0	+	0	= 0
0 1 1	3	0	+	0	+	0	= 0
100	4	0	+	1	+	0	= 1
101	5	0	+	0	+	0	= 0
110	6	0	+	0	+	0	= 0
111	7	0	+	0	+	1	= 1

Maxterm Function Example

• Example: Implement f1 in maxterms:

$$f_1 = (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y+z')$$

хуг	ĺ	x +y+	Z٠	х+у'	+Z∙ <u>`</u>	(+y'+	Z'· X	('+y+	Z'- <u>X</u>	'+y'+	<u>z</u> =	<u>f1</u>
000	0	0		1		1	•	1		1	=	0
001	1	1		1		1	•	1		1	=	1
010	2	1		0		1		1		1	=	0
011	3	1		1		0		1		1	=	0
100	4	1		1		1		1		1	=	0
101	5	1		1		1		0		1	=	0
110	6	1		1		1		1		0	=	0
111	7	1		1		1		1		1	=	1

Overview - Canonical Forms

- What are Canonical Forms?
- Minterms and Maxterms
- Index Representation of Minterms and Maxterms
- Sum-of-Minterm (SOM) Representations
- Product-of-Maxterm (POM) Representations
- Conversions between Representations

Canonical Forms

It is useful to specify Boolean functions in a form that:

- · Allows comparison for equality.
- Has a correspondence to the truth tables

Canonical Forms in common usage:

- Sum of Minterms (SOM)
- Product of Maxterms (POM)

Minterms

- <u>Minterms</u> are <u>AND</u> terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., x'), there are 2^n minterms for n variables.
- Example: Two variables (X and Y)produce

```
2 x 2 = 4 combinations:
   XY   (both normal)
   XY'   (X normal, Y complemented)
   X'Y   (X complemented, Y normal)
   X'Y'   (both complemented)
```

• Thus there are <u>four minterms</u> of two variables.

Maxterms

- <u>Maxterms</u> are <u>OR</u> terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., x'), there are 2^n maxterms for n variables.
- Example: Two variables (X and Y) produce

```
2 x 2 = 4 combinations:

X+Y (both normal)

X+Y' (x normal, y complemented)

X'+Y (x complemented, y normal)

X'+Y' (both complemented)
```

MAXTERMS AND MINTERMS

Minterms and	Maxterms	for Three B	Binary Variable	es
THIRD CITIES WITH	ITTOM/SECTIONS	OI IIIICC D	milding running	-

				Minterms		Max	terms
Index	x	y	z	Term	Designation	Term	Designation
0	0	0	0	x'y'z'	m_0	x + y + z	M_0
1	0	0	1	x'y'z	m_1	x + y + z'	M_1
2	0	1	0	x'yz'	m_2	x + y' + z	M_2
3	0	1	1	x'yz	m_3	x + y' + z'	M_3
4	1	0	0	xy'z'	m_4	x' + y + z	M_4
5	1	0	1	xy'z	m_5	x' + y + z'	M_5
6	1	1	0	xyz'	m_6	x' + y' + z	M_6
7	1	1	1	xyz	m_7	x' + y' + z'	M_7

- **Minterms** and **Maxterms** are designated with a subscript The subscript is a number, corresponding to a binary pattern The bits in the pattern represent the complemented or normal

- For Minterms:

- o "0" means the variable is "Complemented".
- o "1" means the variable is "Not Complemented" and

- For Maxterms:

- o "0" means the variable is "Not Complemented" and
- o "1" means the variable is "Complemented".

Index Examples – Four Variables

Index	Binary	Minterm	Maxterm
i	Pattern	$\mathbf{m_i}$	${f M_i}$
0	0000	a'b'c'd'	a+b+c+d
1	0001	a'b'c'd	?
3	0011	?	a+b+c'+d'
5	0101	$\mathbf{a}'\mathbf{b}\mathbf{c}'\mathbf{d}$	a+b'+c+d'
7	0111	?	a+b'+c'+d'
10	1010	ab'cd'	a'+b+c'+d
13	1101	$\mathbf{abc'd}$?
15	1111	\mathbf{abcd}	a'+b'+c'+d'

Minterm and Maxterm Relationship

Minterms and Maxterms for Three Binary Vai	ırıables
--	----------

			Minterms		Max	cterms
x	y	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

• Review: DeMorgan's Theorem (x+y+z)'=x'y'z' and (xyz)'=x'+y'+z'

Thus M_i is the complement of m_i and vice-versa.

- Since DeMorgan's Theorem holds for n variables, the above holds for terms of n variables
- giving: $M_i = m_{i' \text{ and }} m_i = M_i'$ Thus M_i is

Observations

Minterms and Maxterms for Three Binary Variables

			Minterms		Max	cterms
x	y	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	$m_{\rm O}$	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

- In the function tables:
 - Each <u>minterm</u> has one and only one 1 present in the 2^n terms (a <u>minimum</u> of 1s). All other entries are 0.
 - Each <u>max</u>term has one and only one 0 present in the 2^n terms All other entries are 1 (a <u>max</u>imum of 1s).

MINTERM FUNCTION EXAMPLE

Functions of Three Variables

x	y	z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- We can implement any function by "ORing" the minterms corresponding to "1" entries in the function table. These are called the minterms of the function.
- f1 = x'y'z+xy'z'+xyz = m1 + m4 + m7
- f2 = x'yz+xy'z+xyz'+xyz = m3+m5+m6+m7

Minterm Function Example

• Example: Find f1 = m1 + m4 + m7

•
$$f1 = x'y'z + xy'z' + xyz$$

хух	index	m1	+	m4	+	m7	= F1
000	0	0	+	0	+	0	= 0
0 0 1	1	1	+	0	+	0	= 1
010	2	0	+	0	+	0	= 0
0 1 1	3	0	+	0	+	0	= 0
100	4	0	+	1	+	0	= 1
101	5	0	+	0	+	0	= 0
110	6	0	+	0	+	0	= 0
111	7	0	+	0	+	1	= 1

MAXTERM FUNCTION EXAMPLE

Functions of Three Variables

x	y	z	Function f ₁	Function f ₂		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	0	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

- We can implement any function by "ANDing" the maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function.
- $f_1 = (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y+z)$
 - = M0M2M3M5M6
- f2 = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z)
 - = M0M1M2M4

Maxterm Function Example

- Example: Implement f1 in maxterms:
- $f_1 = (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y+z')$ = $M_0M_2M_3M_5M_6$

хуг	i	M_0	•	M_2	•	M_3	•	M	5 .	M_6	= F1
000	0	0	•	1	•	1	•	1	•	1	= 0
0 0 1	1	1	•	1	•	1	•	1	•	1	= 1
0 1 0	2	1	•	0	•	1	•	1	•	1	= 0
0 1 1	3	1	•	1	•	0	•	1	•	1	= 0
100	4	1	•	1	•	1	•	1	•	1	= 1
101	5	1	•	1	•	1	•	0	•	1	= 0
110	6	1	•	1	•	1	•	1	•	0	= 0
111	7	1	•	1	•	1	•	1	•	1	= 1

Conversion Between Forms

To convert between sum-of-minterms and product-of-maxterms form (or vice-versa) we follow these steps:

- Change from products to sums, or vice versa.
- Swap terms in the list with terms not in the list.

• Example:Given F as before: $F(x, y, z) = \sum_{m} (1,3,5,7)$

• Give the other form of the orig

$$F(x, y, z) = \Pi_M(0, 2, 4, 6)$$

Canonical Sum of Minterms

- Any Boolean function can be expressed as a <u>Sum of Minterms (SOM)</u>.
 - o For the function table, the <u>minterms</u> used are the terms corresponding to the 1's
 - For expressions, <u>expand</u> all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term (v+v')
- Example:

Implement f=x+x'y' as a sum of minterms.

- o First expand terms: f=x(y+y')+x'y'
- o Then distribute terms: f=xy+xy'+ x'y'
- \circ Express as sum of minterms: $f = m_3 + m_2 + m_0$

Another SOM Example

- Example: F = A + B'C
- There are three variables, A, B, and C which we take to be the standard order.
- Expanding the terms with missing variables:
- Collect terms (removing all but one of duplicate terms):
- Express as SOM:

Shorthand SOM Form

• From the previous example, we started with:

$$F = A + B'C$$

• We ended up with:

$$F = m_1 + m_4 + m_5 + m_6 + m_7$$

• This can be denoted in the formal shorthand:

$$F(A,B,C) = \Sigma_m(1,4,5,6,7)$$

• Note that we explicitly show the standard variables in order and drop the "m" designators.

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a <u>Product of Maxterns (POM)</u>.
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, "ORing" terms missing variable v with a term equal to v·v' and then applying the distributive law again.
- Example: Convert to product of maxterms:

$$f(x,y,z)=x+x'y'$$

Apply the distributive law:

$$x + x' y' = (x + x') (x + y') = x + y'$$

Add missing variable z:

$$x+y'+z\cdot z'=(x+y'+z)(x+y'+z')$$

Express as POM: $f = M_2 \cdot M_3$

Another POM Example

• Convert to Product of Maxterms:

$$f(x,y,z) = xy + x'z$$

Standard Forms

- Standard Sum-of-Products (SOP) form: equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms
- Examples:
 - SOP: ABC + A'B'C + B
 - POS: (A+B).(A+B'+C').C
- These "mixed" forms are <u>neither SOP nor POS</u>
- (AB+C)(A+C)
- A B C' + A C (A + B)

Standard Sum-of-Products (SOP) and Product-of-Sum (POS)

Implementation of SOP (POS) is a two-level network of gates such that:

- The first level consists of *n*-input AND (OR) gates, and
- The second level is a single OR (AND) gate

AND/OR Two-level Implementation of SOP Expression

- A Boolean function maybe expressed in a non standard form: F=AB+C(D+E)
- It can be changed to standard form.

SOP and POS Observations

The previous examples show that:

- Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
- Boolean algebra can be used to manipulate equations into simpler forms.
- Simpler equations lead to simpler two-level implementations

Questions:

- How can we attain a "simplest" expression?
- Is there only one minimum cost circuit?
- The next part will deal with these issues.