Lecture – 11

Outline

- sequential circuits
- storage elements: latch and flip-flop
- Sequential circuit analysis
 - Moore and Mealy Models
 - State tables
 - State diagrams

Sequential Circuit Analysis

- General Model
 - Current State at time (t) is stored in flip-flops.

- Next State at time (t+1) is a Boolean function of State and Inputs.
- Outputs at time (t) are a Boolean function of State (t) and (sometimes) Inputs (t).

Moore and Mealy Models

• Sequential Circuits or Sequential Machines are also called *Finite State Machines* (FSMs). Two formal models exist:

Mealy Model

- Named after G. Mealy
- Outputs are a function of <u>inputs</u> AND <u>states</u>

Moore Model

- Named after E.F. Moore
- Outputs are a function ONLY of <u>states</u>

Example 1

Step 1:

• Input flip-flop equations:

$$D_A=Ax+Bx$$

 $D_B=A'x$

Step 2:

• State equations:

$$A(t+1) = D_A = Ax + Bx$$

$$B(t+1) = D_B = A' x$$

Output equations: y = x' (B + A)

Step 3:

• State Table and State Diagram

State Table Characteristics

- *State table* a multiple variable table with the following four sections:
 - *Present State* the values of the state variables for each allowed state.
 - *Input* the input combinations allowed.
 - *Next-state* the value of the state at time (t+1) based on the <u>present state</u> and the <u>input</u>.
 - *Output* the value of the output as a function of the <u>present state</u> and (sometimes) the <u>input</u>.
- Considered as a truth table:
 - the inputs are Input, Present State
 - and the outputs are Output, Next State

Example 1: State Table.

• The state table can be filled in using state equations and output equations:

$$\begin{split} A(t+1) &= D_A = A(t)x(t) + B(t)x(t) \\ B(t+1) &= D_B = A(t)'x(t) \\ y(t) &= x(t)'(B(t) + A(t)) \end{split}$$

Present State	Input	Next	State	Output
A(t) B(t)	x(t)	A(t+1)	B(t+1)	y(t)
0 0	0	0	0	0
0 0	1	0	1	0
0 1	0	0	0	1
0 1	1	1	1	0
1 0	0	0	0	1
1 0	1	1	0	0
1 1	0	0	0	1
1 1	1	1	0	0

State Diagrams

- The sequential circuit function can be represented in graphical form as a <u>state diagram</u> with the following components:
 - A <u>circle</u> with the state name in it for each state
 - A <u>directed arc</u> from the <u>Present State</u> to the <u>Next State</u> for each <u>state transition</u>
 - A label on each <u>directed arc</u> with the <u>Input</u> values which causes the <u>state transition</u>, and
 - A label:
 - On each <u>directed arc</u> with the <u>output</u> value produced (Mealy), or
 - On each <u>circle</u> with the <u>output</u> value produced (Moore)

Example 1: State Diagram

- On <u>directed arc</u> with the <u>output</u> included:
 - input/output
 - Mealy type output depends on state and input

Preser	nt State	Input	Next	State	Output
A _t	<u>B</u> ţ	X_{t}	A _{t+1}	B _{t+1}	$\widehat{X}^{\hat{f}}$
0	0	0	0	0	0
0	0)	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

$$A(t+1) = D_A = A(t)x(t) + B(t)x(t)$$

$$B(t+1) = D_B = A(t)'x(t)$$

$$y(t) = x(t)'(B(t) + A(t))$$

Example 2

Step 1:

 Input flip-flop equations: D_A=x⊕y⊕A

Step 2:

• State equations: $A(t+1) = D_A = x \oplus y \oplus A$ Output equations: Z(t) = A(t)

Step 3:

• State Table and State Diagram

Example 3: State Table

• The state table can be filled in using state equations and output equation:

$$\begin{split} &A(t+1) = &D_A = x(t) \oplus y(t) \oplus A(t) \\ &Z(t) = &A(t) \end{split}$$

Present state	Inp	outs	Next state	Output	
A	X	Y	A	Z	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	0	
1	0	0	1	1	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Design steps:

- Given the word description and specifications
- Derive a state diagram for the circuit
- Obtain the binary-coded state table (transition table)
- Derive the simplified flip-flop input equations and output equations.
- Draw the circuit

Given the word description and specifications

Derive a state diagram for the circuit

Obtain the binary-coded state table (transition table) Derive the simplified flip-flop input equations and output equations.

Draw the circuit

Mealy Machine Design

• Example 1: design a circuit that detects a sequence of three or more consecutive 1's in a string of bits

Input: 010011011110Output: 000000000110

SEQUENTIAL CIRCUIT DESIGN

• State Diagram

Given the word description and specifications

Derive a state diagram for the circuit

Obtain the binary-coded state table (transition table) Derive the simplified flip-flop input equations and output equations.

Draw the circuit

Given the word description and specifications

Derive a state diagram for the circuit

Obtain the binary-coded state table (transition table)

Derive the simplified flip-flop input equations and output equations.

Draw the circuit

• State Table

Present	State	Input	Next	State	Output	
Α	В	X	Α	В	У	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	0	1	

Given the word description and specifications
Derive a state diagram for the circuit
Obtain the binary-coded state table (transition table)
Derive the simplified flip-flop input equations and output equations.
Draw the circuit

• Use the K-Map to simplify flip-flop input equations and output equations

Present	State	Input	Next	State	Output
Α	В	X	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	0	1

Mealy Machine Design

Example 2: design a circuit that detects a transition 0->1

Input: 010011011110Output: 010010010000

Design steps:

- Given the specification
- Derive the state Diagram
- Obtain the binary-coded state table
- Derive the simplified flip-flop input equations and output equations.
- Draw the circuit

Given the word description and specifications

Derive a state diagram for the circuit Obtain the binary-coded state table (transition table) Derive the simplified flip-flop input equations and output equations.

Draw the circuit

Moore Machine Design

Example 1: design a circuit that detects a sequence of three or more consecutive 1's in a string of bits

State Diagram

Given the word description and specifications Derive a state diagram for the circuit

Obtain the binary-coded state table (transition table)

Derive the simplified flip-flop input equations and output equations.

Draw the circuit

State Table

Given the word description and specifications Derive a state diagram for the circuit

Obtain the binary-coded state table (transition table)

Derive the simplified flip-flop input equations and output equations.

Draw the circuit

Present State		Input	Next State		Output
A	В	Х	A	В	у
0	0	0	0	0	0
0	0	1	0	1	0
()	1	0	()	0	0
0	1	1	1	0	0
1	0	0	()	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Use the K-Map to simplify flip-flop input equations and output equations

Given the word description and specifications
Derive a state diagram for the circuit
Obtain the binary-coded state table (transition table)
Derive the simplified flip-flop input equations and output equations.
Draw the circuit

SEQUENTIAL CIRCUIT DESIGN

Moore Machine Design

• Example 2: design a circuit that detects a transition 0->1

Design steps:

- Given the specification
- Derive the state Diagram
- Obtain the binary-coded state table
- Derive the simplified flip-flop input equations and output equations.
- Draw the circuit