Lecture – 11 - Chapter 5

Outline

- sequential circuits
- storage elements: latch and flip-flop
- Sequential circuit analysis
 - Moore and Mealy Models
 - State tables
 - State diagrams

Introduction to Sequential Circuits

- A Sequential circuit contains:
 - Storage elements:
 Latches or Flip-Flops
 - Combinational Logic:
 - Implements a multiple-output switching function
 - Signals from the outside are **inputs**.
 - Signals to the outside are **outputs**.
 - Other inputs, State or Present State, are signals from storage elements.
 - The remaining outputs, Next State are inputs to storage elements.

• Combinatorial Logic

- Next state functionNext State = f(Inputs, State)
- Output is a function of inputs and State.

Storage element

• **Storage elements:** devices capable of storing binary information

flip-flop: used in clocked sequential circuit, storing one bit of information: state

The flip-flop is updated when a pulse of the clock signal occurs.

Latch: basic component of flip-flop.

Basic (NAND) S – R (<u>Set-Reset latch</u>)Latch

• "Cross-Coupling" two NAND

gates gives the S'-R' (Set-Reset) Latch:

Which has the time sequence behavior:

S = 0, R = 0 is <u>forbidden</u> as input pattern

D Latch

• Adding an inverter to the S-R Latch, gives the D Latch

(shown with an enable input)

The graphic symbol for a D Latch is:

The enable input often acts as the clock.

• Note that there are no "indeterminate" states!

Edge-Triggered D Flip-Flop

• The edge-triggered D flip-flop is the master-slave D flip-flop

• The change of the D flip-flop output is associated with the negative (positive) edge at the end of the pulse

Sequential Circuit Analysis

- General Model
 - Current State at time (t) is stored in flip-flops.

- Next State at time (t+1) is a Boolean function of State and Inputs.
- Outputs at time (t) are a Boolean function of State
 (t) and (sometimes) Inputs (t).

Moore and Mealy Models

• Sequential Circuits or Sequential Machines are also called *Finite State Machines* (FSMs). Two formal models exist:

Mealy Model

- Named after G. Mealy
- Outputs are a function of <u>inputs</u> AND <u>states</u>

Moore Model

- Named after E.F. Moore
- Outputs are a function ONLY of states

Example 1

- <u>Input</u>: x
- Output: y
- <u>State:</u> (A, B)
- What is the <u>Output</u> <u>Function?</u>
- What is the <u>Next State</u> <u>Function?</u>

• Mealy or Moore?

Example 1 (continued)

Step 1:

• Input flip-flop equations:

$$D_A=Ax+Bx$$

 $D_B=A'x$

Step 2:

• State equations:

$$A(t+1) = D_A = Ax + Bx$$

$$B(t+1) = D_B = A' x$$

Output equations: y = x' (B + A)

Step 3:

• State Table and State Diagram

State Table Characteristics

- *State table* a multiple variable table with the following four sections:
 - *Present State* the values of the state variables for each allowed state.
 - *Input* the input combinations allowed.
 - *Next-state* the value of the state at time (t+1) based on the <u>present state</u> and the <u>input</u>.
 - *Output* the value of the output as a function of the <u>present state</u> and (sometimes) the <u>input</u>.
- Considered as a truth table:
 - the inputs are Input, Present State
 - and the outputs are Output, Next State

Example 1: State Table.

• The state table can be filled in using state equations and

output equations:

$$\begin{split} A(t+1) &= D_A = A(t)x(t) + B(t)x(t) \\ B(t+1) &= D_B = A(t)'x(t) \\ y(t) &= x(t)'(B(t) + A(t)) \end{split}$$

Present State	Input	Next	State	Output
A(t) B(t)	x(t)	A(t+1)	B(t+1)	y(t)
0 0	0	0	0	0
0 0	1	0	1	0
0 1	0	0	0	1
0 1	1	1	1	0
1 0	0	0	0	1
1 0	1	1	0	0
1 1	0	0	0	1
1 1	1	1	0	0

State Diagrams

- The sequential circuit function can be represented in graphical form as a <u>state diagram</u> with the following components:
 - A <u>circle</u> with the state name in it for each state
 - A <u>directed arc</u> from the <u>Present State</u> to the <u>Next State</u> for each <u>state transition</u>
 - A label on each <u>directed arc</u> with the <u>Input</u> values which causes the <u>state transition</u>, and
 - A label:
 - On each <u>directed arc</u> with the <u>output</u> value produced (Mealy), or
 - On each <u>circle</u> with the <u>output</u> value produced (Moore)

Example 1: State Diagram

- On <u>directed arc</u> with the <u>output</u> included:
 - input/output
 - Mealy type output depends on state and input

Preser	nt State	Input	Next	State	Output
A _t	<u>B</u> ţ	Xţ	A _{t+1}	B _{t+1}	Ϋ́t
0	0	0	0	0	0
0	0)	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Example 2

O Input: x, y

Output: Z

O State: A

• What is the <u>Output</u> <u>Function</u>?

• What is the <u>Next State</u> <u>Function</u>?

• Mealy or Moore?

Example 2 (continued)

Step 1:

• Input flip-flop equations: $D_A=x\oplus y\oplus A$

X D A Z

Step 2:

State equations:
 A(t+1) =D_A=x⊕y⊕A
 Output equations:
 Z(t)=A(t)

Step 3:

• State Table and State Diagram

Example 2: State Table

• The state table can be filled in using state equations and output equation:

$$\begin{split} &A(t+1) = &D_A = x(t) \oplus y(t) \oplus A(t) \\ &Z(t) = &A(t) \end{split}$$

Present state	Inputs		Next state	Output	
A	X	Y	A	Z	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	0	
1	0	0	1	1	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Example 2: State Diagram

- On <u>circle</u> with output included:
 - state/output
 - Moore type output depends only on state

Present state	Inp	outs	Next state	Output
A	X	Y	A	Z
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1